

Revista da Associação Brasileira de Teoria e Análise Musical
Journal of the Brazilian Society for Music Theory and Analysis
@ TeMA 2021 – ISSN 2525-5541

MUSICA THEORICA 2021, V. 6.1
SCIENTIFIC ARTICLE

DOI: 10.52930/mt.v6i1.192
Data do recebimento: 18/07/2021

Data da aprovação final: 18/09/2021

Codings for rhythm generation: a proposal and

comparative study

Codificações para geração de ritmos: uma proposta e um estudo
comparativo

Adolfo Maia Jr.
University of Campinas

Igor Leão Maia
Federal University of Minas Gerais

Abstract: In this work, we present a brief review of strategies to code rhythms and point to
their possibilities and limitations in a unified way. We start by giving an overview of the
representation (coding) of rhythms and their possible uses. Then we present different
methods to analyse and generate rhythm patterns, which can be easily read by humans,
through a simple algorithm. We also aim to provide a general evaluation of their pros and
cons regarding their use in composition and analysis. In a more abstract approach, we define
Rhythm Spaces as sets of strings of symbols endowed with suitable operations and
algorithms that can be applied to generate new and complex rhythm patterns. Our approach
can be useful in order to provide suitable code/notation to be used in computer applications
in rhythm analysis and composition.

Keywords: Rhythm Encodings. Music Analysis. String Representation. Computational
Musicology.

1. Introduction
In their now classical work, The Rhythmic Structure of Music, Cooper and

Meyer have stressed in its first phrase that “to study rhythm is to study all the
music. Rhythm both organizes, and is itself organized by, all the elements which
create and shape musical processes” (Cooper; Meyer 1960, p.1). It is difficult not
agree with them since music is a time process of evolving sound structures,

MAIA, A.; MAIA, I. Codings for Rhythm Generation: a proposal

and comparative study

240

which are constructed mainly taking into account the pace of their time
transformations. Varese’s moto “Music is organized sound” (1996) implies, most
importantly, the time organization as mentioned by Cooper and Meyer. In many
cases, rhythm is the fundamental structure of a musical piece.

Music notation, in most cases, tries to record visually the time perception
of these sound structures by using correspondent strings of symbols for each
instrument which are graphically represented them in a two dimensional score.
However, music notation, although highly developed nowadays, as well as
further accessible through computer software, are not quite appropriate for
formal and computer manipulations from the point of view of composition, as
well as for quantitative analysis of large sections of symbolic music data (music
notation and scores). There are, however, some quantitative music analysis and
incipient formal manipulations included into commercial software although they
are not tailored to deeper analysis or composition with mathematical or formal
approach. This was one of the principal motivations for the creation of the area
of Computational Musicology, that is, to develop algorithmic tools able to find
patterns in large collections of symbolic music data (Cook 2004). Closely related
are the efforts in the area of Digital Humanities which, among other goals, make
use of large collections stored in data banks as, for example, historical
documents, letter collections and other kinds of material, many of them in pdf
and other formats, which can be freely accessed and analysed. Such a project, for
the case of musicological studies must include full digitalization of works of
music in order to encode them in MIDI, XML or, possibly, in other formats, which
can be reproduced and formally analysed through computer programs designed
for music analysis and musicology. Such computer programs, of course, must
recognize and manipulate melodic, harmonic and rhythmic structures. This
work goes in the direction to provide some suggestions for coding rhythms.

Although rhythm manipulations have been explored since the beginning
of music making itself, we think that there is a lack of a significant number of
rhythm representational models which can be algorithmically implemented in a
computer language. Along the past centuries, Western Music notation became
highly complex in order to encompass ancient as well modern and contemporary
music (Gould 2011), which has also incorporated sophisticated graphical
notations as shown, for example in Cage’s book Notations (Cage 1969), among
many others. With the development of areas such as digital technology,

MUSICA THEORICA Revista da Associação Brasileira de Teoria e Análise Musical 2021,
 v. 6, n. 1, p. 239–265 – Journal of the Brazilian Society for Music
 Theory and Analysis @ TeMA 2021 – ISSN 2525-5541

241

computer music and, more recently, computer musicology, it became necessary
to think how to code music efficiently (Cook 2004), mostly in order to get
quantitative and statistical data quickly as well as formal manipulations for
music composition.

Now, rhythm is a time organized phenomenon or, more formally, a time
ordered set of sound events. Of course, any representation of rhythm, since it
abstracts from the sound source, is a reductionist approach, nevertheless, it
provides valuable information which the contemporary technology allows us to
get qualitative and quantitative digital data which are amenable for computer
approach in analysis and composition. In line with this somewhat reductionist
scheme, in this work we are interested in studying rhythms from a mathematical
point of view, taking into account a translation, through suitable representation,
from Western Music Notation to strings of symbols which, in its turn, can be
coded and used through some algorithm for computer based musical analysis as
well music composition. However, we don’t go deeper into algorithms in this
paper, being our main purpose here to find ideally useful, and also minimal,
representation for given rhythm patterns. So, in this paper, a rhythm pattern can
be thought as a rhythmic motive or even a rhythm phrase.

An early and interesting step in this direction was given by Hook (1998)
which, in order to study rhythm patterns in Messiaen’s Turangalila Symphony,
develops a simple code and operations on rhythm patterns. Toussaint (2013)
presents many different notations of rhythm patterns and make extensive use of
his geometrical notation in his approaches to the study of rhythm. However, this
representation focus on cyclical rhythmic structures leaving behind other types
of rhythmic structures. Sethares also presents, in Section 2 of his book, several
different rhythm notations (Sethares 2007). Nevertheless, since these authors are
not primarily concerned with rhythm notation itself, they don’t present any code
representations for arbitrarily complex rhythm. However, an exception to this is
comprehensive study Computational Models of Rhythm and Meter by Georg Boenn
(Boenn 2018), in which he presents a coherent “shorthand notation for musical
rhythms” (SNMR), based on an early work by percussionist Peter Giger on
“rhythmoglyphs”. In addition, he also presents his software Chunking for
composition and analysis, mainly for rhythm patterns, although he doesn’t
provide complex examples of second order nested rhythm patterns as our
example in Fig. 11 below.

MAIA, A.; MAIA, I. Codings for Rhythm Generation: a proposal

and comparative study

242

Most probably there is no mathematical rhythm representation, and
consequently, no algorithm, capable to code all possible human creation of
rhythm patterns and vice-versa. However, it’s possible to get mathematical
rhythm representations which partially do the job for a restrict domain as, for
example, most part of Western Common Notation. The representation itself
should allow the user to know the limits of its usefulness. Sethares reinforces the
limits of formal representations as “attempts to mimic”:

A computational approach to the study of rhythm builds a model or a
computer program that attempts to mimic people’s behavior in locating
rhythms and periodicities (Sethares 2007).

In this paper we are more interested in presenting alternatives for rhythm
representation from moderate to reasonably high level of complexity. This means
it can include variations of rhythmic structures such as tuplets and different
patterns of notes and rests. To do so, we start by presenting a review of some
common rhythm representations, as they appear in works from the above
mentioned authors among others. Since all those representations are strongly
based on generation and analysis of strings of symbols, we show in section 3 a
brief introduction of the theory of strings of symbols, also nicknamed
“Stringology” (Crochemore; Rytter 2002; Crochemore et al. 2007). Following the
short exposition of “Stringology”, we present an algebra for binary coded strings
and later for triadic representations which include more complex rhythm
patterns.

As commonly understood musical rhythm is perceived as the set of time
distances between consecutive elements of a discrete sequence of sounds, or,
more technically, between sound attacks. However, since we are most interested
in the translation from music notation to strings of symbols, we do not intend, in
this paper, to delve in the matters of psychoacoustic definitions of rhythm. The
above particular definition, although incomplete, is enough for our formal
approach of rhythm representation as a string of symbols.

2. Coding rhythms on strings
Formally, we are interested to work in a defined Rhythm Space. The formal
approach to do this is based on the following:

MUSICA THEORICA Revista da Associação Brasileira de Teoria e Análise Musical 2021,
 v. 6, n. 1, p. 239–265 – Journal of the Brazilian Society for Music
 Theory and Analysis @ TeMA 2021 – ISSN 2525-5541

243

1. Define, or take, a finite set of basic rhythms, say b. This is quite arbitrary, of
course, however our approach is also very general, so no restriction is
necessary at this step.

2. Define a finite set of operations O on b. Also these operations are also
arbitrary, but they must be consistent and unambiguous when applied on
elements of b. These operations, in general, will create new rhythm patterns.

3. A Rhythm Space R based on b is the set of all possible rhythm patterns
generated through the set of operations of item 2. We can write the Rhythm
Space as a pair R = (O, b). Of course, the bigger b and O, the bigger R.

4. Now we can extend the set of operations from B to the Rhythm Space R, as
well create new kinds of operations. This extended set of operations allows
new modifications and combinations of rhythms.

5. Once obtained a Rhythm Space it is possible to use its subsets to generate
rhythm patterns for composition, analysis, or even parsing a given rhythm
pattern in terms of basic ones.

Observe that although b and O are finite sets, the Rhythm Space R is not,
since the operations in O can be applied an arbitrary number of times on any
element, or subset of elements, of b. The idea of start from a basic set of rhythms
is to have control on the possible outputs, so we can logically reproduce or
modify any result. Also it resembles the mathematical idea of a basis of a Vector
Space, or even generators of mathematical structures like groups or algebras.

Now, in order to get the formal approach as described above, a
mathematical framework on which we can work out our model of rhythm theory
is necessary. As mentioned before, this framework is based on the
representation/coding and formal operations of rhythm patterns by strings of
symbols, that is, through Stringology.

2.1. Simple String Representations

Out of all possible rhythm representations, the simplest one and most
commonly used is the so-called binary encoding. An example of this type of
representation is one in which the value ”1” represents an attack (or note on in
MIDI protocol) and “0”, represents rests. In this section we denote as 𝑺(𝒏) the
set of all strings using a set of 𝒏 symbols. In this way, for example, Reich’s famous
Clapping Music rhythm pattern, shown in Fig. 1, is coded as a binary string,

MAIA, A.; MAIA, I. Codings for Rhythm Generation: a proposal

and comparative study

244

taking an eighth note as rhythmic unit, as 𝑠	 = 	 [1	1	1	0	1	1	0	1	0	1	1	0]. So, it’s an
element of 𝑺(𝟐).

Figure 1: Reich’s Clapping Music Rhythm.

However, this representation clearly has its limits. For instance, all notes
and rests in Fig. 1, the Reich’s rhythm pattern, have the constant duration of a
eighth note. So, no symbol is necessary for duration. The eighth note duration
works like a slot which can be full, with a note (symbol 1) or empty, (symbol 0).
Now, consider the rhythm shown in Fig. 2. Strictly speaking it can’t be
represented only by using eighth notes, since note durations now are different
one from another and the attacks are clearly non-periodic. The problem can be
solved, for example, if we introduce an additional symbol for “time
prolongation”, meaning time linear augmentation or tie, which can differentiate
between the basic rhythmic unit and other durations. However, in doing so, we
must enlarge our alphabet from 2 to 3 symbols. For example, using the symbol
"&" to denote the augmentation of basic rhythmic units, which can include ties,
the rhythm pattern of Fig. 2, can be written as

𝑠 = [1	&	1	&	1	0	1	&	1	0	1	0	1	&	1	0]

Figure 2: A rhythm pattern derived from Reich’s string 𝑠 ∈ 𝑺 𝟑 .

Observe in the above example that the code is the same for a punctuated
quarter note or three tied eighth notes. In short, any string representation has
some kind of limitation for more complex notations. For example, it is not
difficult to write new rhythm patterns that also can’t be written as strings using
3 symbols or any other number of symbols. It is worth to stress that our approach
intends to get general representations which can be read by the user, since any
representation can be ultimately reduced to binary code and then read by a
computer program. However, this kind of binary representation would be very
tricky to decode visually and, for sure, difficult to work with. So, our approach

�����
� � � � �

� � � � � � � �

�
� � � �

������
��
�� � � � �

� � � � � �

�
� � � � � 	 � 	 � 	 �

MUSICA THEORICA Revista da Associação Brasileira de Teoria e Análise Musical 2021,
 v. 6, n. 1, p. 239–265 – Journal of the Brazilian Society for Music
 Theory and Analysis @ TeMA 2021 – ISSN 2525-5541

245

intends to be a useful tool in analysis or composition just by reading rhythm
strings.

Therefore, complex rhythms require strings using a greater number of
symbols. The above problem can be viewed in a more formal approach according
to Shannon’s Theory of Information which proves that new information, that is,
a new symbol is needed in order to preclude ambiguity such that one shown
above, in Fig. 2. In that case we offered obvious solutions, but they aren’t the only
ones. In fact, the new information, or symbol, needed to code them uniquely can
be, for example, note duration, which we prefer than a “tie” symbol. Clearly,
more complex rhythms may require a symbol for tied notes.

Now, non-accented simple rhythms like the above in Fig. 2 can be
represented using only three symbols. For example, consider the representation
which we take the number “1” for note attack, “-1” for rests, and the number of
“0” (zeros) for note or rest duration. Accordingly, taking the time unit as the
eighth note, the rhythm pattern in Fig. 2 can be coded as 𝑺(𝟑) string:

[1 0 0 0 -1 0 1 0 0 -1 0 1 0 -1 0 1 0 0 -1 0]

Observe that both representations of the rhythm pattern in Fig. 2 need
three symbols. However, the interpretation is different for the symbols and both
strings represents the rhythm pattern uniquely.

Now, observe that the above binary encoding doesn’t take into account
rhythm accentuation. Again, if new information is needed, such as for an
accentuated rhythm pattern, this implies introducing a new symbol for
accentuation. Particularly, one can suffice most musical needs in term of
accentuation by thinking in binary code, that is, accented or no accented notes.
This can be accomplished changing the encoding of note attack as, for example:
keep the symbol “1” for non-accentuated notes and “2” for accentuated ones. For
example, consider the rhythm pattern of Fig. 3.

Figure 3: Accentuated rhythm pattern.

��

�� �

�
� �

� �

� �
� � � �

� � � � � �

�
� � �

MAIA, A.; MAIA, I. Codings for Rhythm Generation: a proposal

and comparative study

246

It can properly be coded using 4 symbols as

[2 0 0 0 -1 0 1 0 0 -1 0 2 0 -1 0 1 0 0 -1 0]

As another example, a simple rhythm pattern like that one shown in Fig.
4 can be coded with just 4 symbols, where “2” means an accented note, without
taking into account any of the information on different hierarchies of
accentuation or dynamics. This is the minimal alphabet for our approach of
accented rhythms.

Figure 4: A simple rhythm pattern with code string x = [1 0 2 0 0 -1 0 2 0 1 0 -1 0 1 0].

Observe that 𝑥	 ∈ 𝑺(𝟒). In the above examples we chose an eighth note
duration as time unit. Of course, the smaller the time unit the greater the quantity
of the symbol 0 needed to represent larger durations.

Now, another question is how to include dynamics? Firstly, observe that
in order to represent properly dynamics in rhythm patterns it is necessary to
include at least two other symbols: one indicating the group of notes to change
dynamics and other ones denoting the dynamics levels. Therefore, in the case of
N levels of dynamics, N+1 symbols are necessary. For example, let’s consider just
one level of dynamics, say, a forte, denoted by ƒ. We can use, for example, a
symbol like a bar | in order to delimit the group of notes whose dynamics we
want to change. Now we have a set of six symbols at disposal, namely, 𝑆 =
	−1, 0, 1, 2, ƒ, 	}.			The only rule for grouping is that the first symbol inside the

bars is the dynamics symbol. Consider, for example the rhythm pattern in Fig.
5.

Figure 5: An example of pattern including dynamics.

��

�� � �

��
�

� � �

� � � �

�
� �

�

� � � � � �

MUSICA THEORICA Revista da Associação Brasileira de Teoria e Análise Musical 2021,
 v. 6, n. 1, p. 239–265 – Journal of the Brazilian Society for Music
 Theory and Analysis @ TeMA 2021 – ISSN 2525-5541

247

The code for this pattern is given by a 𝑺(𝟔) string:

𝒔 = 	 [−𝟏	𝟎	|	ƒ	𝟐	𝟎	|	𝟏	𝟎	𝟏	𝟎	 − 𝟏	𝟎	|	ƒ	𝟐	𝟎	|	𝟏	𝟎	𝟏	𝟎	 − 𝟏	𝟎	|	ƒ	𝟐	𝟎	|	𝟏	𝟎	𝟏	𝟎]

	
The above approach can be generalized without conceptual difficulty

using a finite set of symbols, that is, an alphabet, depending on the number of
musical parameters and their different levels. The greater the alphabet and/or the
allowed length of the strings the greater the possibility for the representation, or
encoding, of complex rhythms. Or in other way around, the greater complexity
of rhythm patterns the bigger the set of symbols needed to represent them as
strings of symbols.

It is important to observe that not all strings formed with a given alphabet
represents a rhythm pattern. In fact, the valid ones form a proper subset of the
entire set of possibilities. For example, Figs. 4 and 5 show simple accented
rhythm patterns with their associate code, but the string y = [0 2 0 0 -1 0] doesn’t
represent any rhythm string since it begins with a duration symbol and not with
an event symbol such as note or rest. Another example, the string 𝑤	 =
	[1	0	1	1	0 − 1	0] also doesn’t represent any rhythm patterns since it has two
consecutives attacks without their following zeros in order to inform duration.
Now, the string 𝑧	 = 	 [2	0	1	0	 − 1	0	1	0] does represent the rhythm pattern formed
with the last four notes/rests in Fig. 4, since all the rules are fulfilled. It’s easy to
see that all rhythm strings must end with 0, since any event must have a duration
indication. In addition, of course, there is no accent for rests. In short, not every
element of S(n) represents a rhythm string. In fact, rhythm strings, written with
a set of n symbols, is a proper subset of S(n).

As another example of alternative notation, consider the rhythm pattern
of Fig. 2 (without accent). It can be coded as a 𝑺(𝟑) string

|	𝟏	𝟎	𝟎	𝟎	|	𝟎	𝟎	|	𝟏	𝟎	𝟎	|	𝟎	𝟎	|	𝟏	𝟎	|	𝟎	𝟎	|	𝟏	𝟎	𝟎	|	𝟎	𝟎	|	

Here notes are separated by the small bar, where the first symbol inside a

pair of bars means the type of event, that is, 1 = note, 0 = rest. The first symbol,
either 1 or 0, gives a note or a rest while the number of other 0 symbols means
the duration in terms of the time unit. Observe that the symbol 1 must appears
always at first position and it is always interpreted as a note, but the
interpretation of the symbol 0 depends on its position (at first position or out of

MAIA, A.; MAIA, I. Codings for Rhythm Generation: a proposal

and comparative study

248

there). Observe that again we needed 3 symbols, except that the meaning of them
were changed, but the size of the alphabet is the same. In terms of the Theory of
Information there is no difference between them. In Sections 3 and 4 we develop
further these concepts with several examples.

2.2. Rhythm as Arrays

It is clear now that the greater the number of music parameters the greater
the number of symbols necessary to represent them in a single string. A way to
circumvent that increasing of the number of symbols, in our rhythm alphabet is
to encode parameters such as accents, or dynamics, as additional binary strings
or, equivalently, defining a matrix representation with two, or more rows where
the first row is the basic representation of the rhythm pattern, that is without
accents or dynamics or other parameter. These extra information is represented
as added strings below the first one. Consider, for example the rhythm pattern
in Fig. 5, which includes accentuation and dynamics. The first row is the usual
binary representation of note/rest with the symbols 0 and 1. In the second row,
the accent is coded as symbol “1” below the note attack, the other ones take the
value “0”. The third row shows the representation of dynamics as “1” for the
note with changed dynamics and “0” otherwise. In this example they coincide
and we have just one level of dynamics (one symbol). It can be coded as the
following matrix

Figure 6: Matrix Representation of Rhythm Pattern in Fig. 5. The first row is the non-

accented rhythm, the second one gives the place of accents and the third one, the place
of dynamics, here, just one, the forte accent.

Fig. Now, observe the above matrix represents only one bar. If we want
more bars, each of them must be represented by three rows. For example, for the
pattern in Fig. 5, if a second bar is the repetition of the first one, the matrix
representation of the two bars pattern reads

2

4
�1 0 1 0 1 0 1 0 �1 0 1 0 1 0 1 0 �1 0 1 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

3

5

<latexit sha1_base64="lLawwiR48re8CGpLkUEcHWGVDxE=">AAADc3icvVJBT9swFHYTNlg2RtmkXThg0W1CSFRJhQS7VeyyI5MoIDVR5bgvrYXjBPsFqYryA/b3duNfcNkdN82hK3BC4klP/vx9n/Xs5xfnUhj0/buW4669ebu+8c57/2Hz41Z7+9OFyQrNYcAzmemrmBmQQsEABUq4yjWwNJZwGV//nOuXt6CNyNQ5znKIUjZRIhGcoaVG260/YQwToUq4KWrqoPJCCQkOaSMwrdmsKvtldVD2jqpSVxZW3mFAv1Pf5nPrSw00DL16uyyt5ksNr1PEC0GNm0bSUIvJFKMFt9R1b9Tu+F2/DvoYBA3okCbORu2/4TjjRQoKuWTGDAM/x8jWQcEl2H8sDOSMX7MJDC1ULAUTlfXMVPSbZcY0ybRNhbRml0+ULDVmlsbWmTKcmlVtTj6lDQtMTqJSqLxAUHxRKCkkxYzOB5COhQaOcmYB41rYu1I+ZZpxtGM6b0Kw+uTH4KLXDY66P373Ov3Tph0bZIfskX0SkGPSJ7/IGRkQ3rp3vji7DnX+uTvunvt1YXVazZnP5L9wDx8A2i/a+g==</latexit>

MUSICA THEORICA Revista da Associação Brasileira de Teoria e Análise Musical 2021,
 v. 6, n. 1, p. 239–265 – Journal of the Brazilian Society for Music
 Theory and Analysis @ TeMA 2021 – ISSN 2525-5541

249

Figure 7: A representation of two bars of rhythm pattern in Fig. 5.

Observe also that time signature is not informed. This kind of information
must be known a priori in this representation. In terms of the Theory of
Information, we are using less symbols, only three, but the size of the
concatenated string [Row1, Row 2, …, Row 6] representing the two dimensional
matrix is six times bigger. In fact, we are using “four” symbols, the fourth would
be, for example, a comma to differentiate one row from another, but this fact is
“hidden” in the two dimensional representation. So, in certain sense, we don’t
get any economy in doing so. In fact, the best representation depends very much
on the purpose of the user and the characteristic of applications. An advantage
of matrix representation is that they are valuable for operations on the rows
which are associated to independent musical parameters.

If we consider the use of this representation in composition, for instance,
it can generate some possibilities for creative work. It can provide, for example,
some hints for the composer on possible solutions to the relation rhythm/pitches
defining also a correspondent matrix representation of set pitches sequences.
However, these possibilities are not without its own problems. Limitations
appear, for example, in difficulties to represent more complex rhythm structures
which can require very large matrices. This problem is partially alleviated due to
the current processing power of computers, nevertheless code readability is lost.
In addition, formal methods, in general, don’t have direct implications on
aesthetics or style. As the masters of experimental and formalized music of the
past have showed in several of their works, formal methods do not entail
abdication of the composer’s musical ideas, aesthetics and imagination.

3. A Short Introduction to Stringology
In this section we present a short introduction of a general theory of

strings, their properties and operations. Our approach is based on that of
Crochemore and Rytter (2002) and Crochemore et al. (2007). In the next two

2

6666664

�1 0 1 0 1 0 1 0 �1 0 1 0 1 0 1 0 �1 0 1 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

�1 0 1 0 1 0 1 0 �1 0 1 0 1 0 1 0 �1 0 1 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

3

7777775

<latexit sha1_base64="nFtz9t9OSMuibLa0UmeH45lO+5s=">AAAEonic7VNNa9tAEN1YapuqH3GSYw9d6raUQI1kAkluJqFQekgTWicBS5jVemQvWa3U3VHACP2v/I7c8m+ylnVwnBYKgZ46MOzb92aY3WEmzqUw6Pu3ay3HffL02fpz78XLV6832ptbZyYrNIcBz2SmL2JmQAoFAxQo4SLXwNJYwnl8eTTXz69AG5GpnzjLIUrZRIlEcIaWGm22rsMYJkKV8KuoqZ3KCyUkOKSNwLRms6rsl9VO2dutSl1ZWHmfA/qR+tb/dD42gIahV1+XpVV/bMA/K/K/XX9fxAtBjZu5o6EWkylGC25pSL1Ru+N3/droQxA0oEMaOxm1b8JxxosUFHLJjBkGfo6RrYOCS7BjXxjIGb9kExhaqFgKJirrFavoB8uMaZJp6wppzS5nlCw1ZpbGNjJlODWr2pz8nTYsMNmPSqHyAkHxRaGkkBQzOt9XOhYaOMqZBYxrYd9K+ZRpxtFu9bwJweqXH4KzXjfY7R6c9jr9w6Yd6+QNeUc+kYDskT75Sk7IgHDnrfPFOXa+u+/db+6p+2MR2lprcrbJPXPDO07JCEg=</latexit>

MAIA, A.; MAIA, I. Codings for Rhythm Generation: a proposal

and comparative study

250

sections we apply it in a particular type of “stringology” of rhythms in which we
include rhythmic representation for tuplets and other complex rhythms. The
concepts defined in this section will be used in the next section when we will
apply them to rhythm strings. The definitions are the following:

1. An alphabet 𝐴 is a finite set of symbols (or letters).
2. A string, or word, is any finite sequence, constructed by juxtaposition, of

symbols of the alphabet 𝐴. We denote an arbitrary string 𝑥	with n elements
as 𝑥	 = 	𝑥[1]	𝑥[2]	𝑥[3]	. . . 𝑥[𝑛]. The i-th symbol (or element) of a string 𝑥 is
denoted by 𝑥[𝑖].

3. The set of all strings on the alphabet 𝐴, that is the total space of all possible
strings, is denoted by 𝐴∗. The alphabet used to write a string 𝑥 is denoted
as 𝑎𝑙𝑝ℎ(𝑥).

4. The length of a string 𝑥, denoted by |𝑥|, is the number of its symbols (also
named elements), including their repetition.

5. The empty string (no symbols) is denoted by ε.
6. 𝑥 is a substring of 𝑦 if 𝑥 can be obtained from 𝑦 by removing zero or more

symbols (not necessarily adjacent) from it. This implies that if 𝑥 is a
substring of 𝑦 then 𝑥 can be written as 𝑥	 = 	𝑦[𝑖K]𝑦[𝑖L]. . . 𝑦[𝑖M] for an
increasing sequence of indices 𝑖1, 𝑖2, . . . , 𝑖𝑚.

7. As a special case of string we define a factor of	𝑥, denoted by 𝑥 𝑖 … 𝑗 , the
substring 𝑥[𝑖]𝑥[𝑖	 + 	1]	. . . 𝑥[𝑗] extracted from 𝑥. If, 𝑖	 > 	𝑗, the substring
𝑥[𝑖. . 𝑗] 	= 	𝜀, by convention. Equivalently, 𝑥	is a factor of 𝑦 if there exist
two strings 𝑢 and 𝑣 such that 𝑦	 = 	𝑢𝑥𝑣. In the case that 𝑢	 = 	𝜀, that is,
𝑦	 = 	𝑥𝑣,	we say 𝑥 is a prefix of 𝑦. If 𝑣	 = 	𝜀, that is 𝑦	 = 	𝑢𝑥, we say that 𝑥 is
a suffix of 𝑦.

8. Identity: 𝑥	 = 	𝑦 if and only if |𝑥| 	= 	 |𝑦| and 𝑥[𝑖] 	= 	𝑦[𝑖] for 𝑖	 = 	1, 2, . . , |𝑥|.
A substring, or factor	𝑥 of a string 𝑦 is named as proper if 𝑥 ≠ 𝑦.

3.1. Operations on Strings

Let be an alphabet 𝐴 and denote 𝑆 = 𝐴∗, the set of all strings written with
the alphabet 𝐴. An operation on the String Space 𝑆 is just a function 𝑓: 𝑆M 	→ 𝑆Z,
where 𝑆M and 𝑆Z are Cartesian products of String Space 𝑆. So the function 𝑓 can
have one or more parameters and can take a vector of strings as values. In the
case it has just one parameter and one value, that is, 𝑓: 𝑆	 → 𝑆, it is called an
Operator on Rhythm Space	𝑆. Clearly, any function must be implemented with a

MUSICA THEORICA Revista da Associação Brasileira de Teoria e Análise Musical 2021,
 v. 6, n. 1, p. 239–265 – Journal of the Brazilian Society for Music
 Theory and Analysis @ TeMA 2021 – ISSN 2525-5541

251

suitable encoding, algorithm and code. Although there exists a great number of
operations, some are very natural and useful, which we define below.

1. Product (or Concatenation): Given two strings in 𝑆, 𝑥 = 𝑥[1]	𝑥[2]. . . 𝑥[𝑛] and
𝑦 = 𝑦[1]𝑦[2]. . . 𝑦[𝑚], the product 𝑥𝑦 is just the concatenation of the strings,
that is:

𝑥𝑦	 = 	𝑥 1 	𝑥 2 . . . 𝑥 𝑛 	𝑦 1 	𝑦[2]	. . . 𝑦[𝑚]

This function is, of course, of type 𝑓: 𝑆´𝑆	 → 𝑆. Observe that the product is

not a commutative operation, 𝑥𝑦	 ≠ 	𝑦𝑥, unless x = y. Nevertheless, it is
associative. Also, the neutral element 𝜀 is just the empty string, since 𝑥𝜀	 = 	𝜀𝑥	 =
	𝑥.

2. Power: 𝑥0 = 	𝜀, and for 𝑛	 ≥ 	1, we define recursively:		𝑥𝑘

	

= 	 𝑥]^K𝑥 for k = 1,
2,..., n. This function is, clearly, an operator 𝑓: 𝑆	 → 𝑆.

3. Reverse: If	𝑥	 = 	𝑥 1 	𝑥[2]. . . 𝑥[𝑛] its reverse is defined as
𝑟𝑒𝑣(𝑥) 	= 	𝑥 𝑛 	𝑥[𝑛	 − 	1]. . . 𝑥[1]	. It is also an operator.

3.2. Stringology of Rhythms

In this section we show how to apply string operation and algorithms to
the case of rhythms represented as strings with the alphabet 𝐴	 = 	 {−1, 0, 1, 2} as
defined in Subsection 2.1. In order to do this, we must define what we mean by
a Rhythm String based on the above alphabet 𝐴. Of course this can be generalized
for an arbitrary number of symbols, with the suitable interpretations for rhythm
patterns. See section 4, below, for an extension and its application on rhythm
representation.

Definition: A Rhythm String is a string based on an alphabet 𝐴, satisfying
the following rules:

1. The first element of a string is a non-zero value.
2. After a non-zero integer only zeros can occur and their number indicates

the duration of the note or the rest.
Observe that all rhythm strings must terminate with 0 value, which

indicates the last unit time of the last note of the pattern. Accordingly, the rules
above also must be satisfied by rhythm factors of rhythm strings. Following the
definitions in subsection 3.1 we denote as 𝑅 the set of all Rhythm Strings based on
the alphabet 𝐴, which we name Rhythm Space. Clearly 𝑅	 ⊊ 	𝑆, since there exist

MAIA, A.; MAIA, I. Codings for Rhythm Generation: a proposal

and comparative study

252

strings in 𝑆 which do not belong to 𝑅 as, for example, any string starting with the
symbol 0.

As a simple example, consider the rhythm and its code string as shown in
Fig. 4. From the representation 𝑥	 = 	 [1	0	2	0	0	 − 1	0	2	0	1	0	 − 1	0	1	0] we can extract
the factor

𝑧	 = 	 [2	0	1	0	 − 1	0	1	0]

which corresponds to the last 4 figures of the score. Clearly	𝑧 is a suffix of 𝑦	 =
	[1	0	2	0	0	 − 1	0] in 𝑥	and 𝑦	is a prefix of	𝑧 in 𝑥 and, of course, we have the
product 𝑥	 = 	𝑦𝑧.
Now, observe that, in general, the usual reverse of rhythm strings, as defined in
Section 3.1, it is not a rhythm string, since, by rule 2 above, the last element of a
rhythm string must be 0 and then its reverse must start with 0 which contradicts
the rule 1. For example, 𝑟𝑒𝑣(𝑧) 	= 	 [0	1	0 − 1	0	1	0	2] doesn’t obey the rule 1, and
then it isn’t a rhythm string.

Clearly we need to define an inversion of different kind. The new reverse
is, in fact, the usual retrograde of a rhythm pattern encoded as a rhythm string,
namely, given a rhythm string 𝑥 = [𝑥 1 	𝑥[2]	. . . 𝑥[𝑛]], we define its retrograde,
denoted as 𝑟𝑒𝑡(𝑥)	, as the rhythm string constructed with the following simple
algorithm:

1. Read the string x from right until find a nonzero value. Copy this block of
values from left to right and paste it as the first factor of 𝑟𝑒𝑡(𝑥).

2. Repeat the same operation for the next blocks always reading them firstly
from the right, copying from the left, and paste them successively from
left to right in the new string 𝑟𝑒𝑡(𝑥).

For example, the retrograde of the rhythm string in Fig. 4 is

𝑟𝑒𝑡(𝑥) 	= 	 [1	0	 − 1	0	1	0	2	0	 − 1	0	2	0	0	1	0].

Observe that decoding this string in score notation we get exactly the

retrograde rhythm of Fig. 4 as shown in Fig. 8.

Figure 8: Retrograde rhythm pattern of Fig. 4.

MUSICA THEORICA Revista da Associação Brasileira de Teoria e Análise Musical 2021,
 v. 6, n. 1, p. 239–265 – Journal of the Brazilian Society for Music
 Theory and Analysis @ TeMA 2021 – ISSN 2525-5541

253

Of course, the above algorithm can be implemented in any computer
language as C++, Python, MATLAB among others, and the rhythm
representation decoded in Common Notation by a program suitably designed to
this task.

Below we present a pseudo-code which mimics a human by reading a
code and translating to music notation. In fact, the source string and the output
are just two ways to write the same rhythm pattern.

 input string s = [s[1], s[2],…, s[n]]

durations = [0 0 … 0 0] // initial vector (size of s)

with zeros only

 for i= 1,2,…,n

 if s[i] = 1

duration[i] = number of following zeros until find

next nonzero number (positive for notes)

 if s[i] = -1

duration[i] = - number of following zeros until

find next nonzero number (negative for rests)

 if s[i] = 0

 durations[i] = 0

notes = vector extracted from durations with only the

nonzero values

For example, the above algorithm makes the following transformations on
a rhythm pattern representation 𝑠, in 𝑅(3)

𝑠	 = 	 [1	0	1	0	0	1	0	 − 1	0		0	1	0	1	0	1	0] => 𝑠′	 = 	 [1	0	2	0	0	1	0 − 2	0	0	1	0	1	0	1	0] =>

𝑛𝑜𝑡𝑒𝑠 = 	 [1		2		1	 − 2		1			1	1]

which translated to music notation reads (taking a quarter note as time unit)

Figure 9: Rhythm pattern decoded from a string 𝑠 in 𝑅(3).

��
�
� �

�

� �

�
� � � � �

MAIA, A.; MAIA, I. Codings for Rhythm Generation: a proposal

and comparative study

254

For simple, non-nested, rhythm patterns, just the sequence of durations of
notes and rests is enough to easily write down the rhythm pattern or the
sequence can be transformed into a MIDI notation and read through a music
notation software.

In addition, it is possible to define algorithms to execute any formal
transformation on strings and consequently endowing correspondent
transformations on rhythm patterns. For example, below we show an algorithm,
that is, a pseudocode, for the operation of retrograde on strings with the alphabet
𝐴 = {1,0, −1} as defined above.

input s = [s[1], s[2],…, s[n]] // enter the rhythm

vector

 for i= 1,2,…,n

 r[i] = s[n-i] // inversion of the of the rhythm vector

r = [r[1], r[2],…, s[n-1], r[n]] // write the inverted

vector

// Obs: r starts with a zero value (the number of zeros

measures note duration). So it is not yet a rhythm

vector.

Now, read vector r, until find the first non-zero value.

Invert this block 𝑏K and store it in a vector output.
Do the same process for other nonzero values of vector

r. The result is

 output = [𝑏K	𝑏L 	…	𝑏]] // k blocks.
// Obs: Each block start with value 1 following with

the number of zeros correspondent to the note duration

 End of pseudocode

Of, course, the greater the complexity of the representation and operations
the greater the complexity and size of the algorithm and its code. The advantage
of a code which can be promptly read by a human, as the examples above, is the
possibility of an easier search for patterns in music analysis and also the
possibility to apply many transformations on patterns in the case of composition.

MUSICA THEORICA Revista da Associação Brasileira de Teoria e Análise Musical 2021,
 v. 6, n. 1, p. 239–265 – Journal of the Brazilian Society for Music
 Theory and Analysis @ TeMA 2021 – ISSN 2525-5541

255

So, in the next section we show how to introduce representations for more
complex rhythm patterns.

4. An Extended Code for Complex Rhythm Strings
Complex rhythms can have disparate combinations and variations as, for

example, duration figures side by side like a whole and thirty-seconds notes. If
we use the minimal figures as time units, the rhythm strings turn out to be very
long, hampering readability. In order to overcome this problem, we use nested
brackets as a notational solution, much the same the nesting symbol for tuplets
in common music notation. This solve partially the problem since the grouped
figures in tuplets can now have the same notation for duration as those outside
the nest. In this way we can avoid using the very minimal duration figure of the
score.

The idea in this section is to present a code that could be used for formal
and computer applications as well as could be perused by a human. These two
goals are in some sense opposed and resembles a little what happens in design
of higher level computer languages. The closer to machine language the lesser
the readability. We show our solution below.

4.1 Definition of the Extended Code

We present here an extension of a representation of rhythm patterns
shown in Subsection 2.1. In order to do so, we define the alphabet and rules for
construct more complex rhythm strings. For each rhythm pattern in a score we
associate a rhythm string based on the alphabet and rules below. For our
representation, the rules for rhythm strings are the following:

1. As in section 2.1, non-accentuated rhythm strings are coded with a pretty
small alphabet, namely, A = {|, [,] , -1, 0, 1 }. If we include N levels of
accent the alphabet is given by A = {|, [,], -1, 0, 1, 2, …, N}. | is the bar
delimiter. The square brackets, [and] are used as delimiters of rhythm
strings and their substrings (or nested substrings) related to rhythm
patterns comprising a bar. They are useful to encode more complex
rhythm structures such as tuplets or nested tuplets, in a bar.

MAIA, A.; MAIA, I. Codings for Rhythm Generation: a proposal

and comparative study

256

2. If more information is needed as, for example, time signature and time
unit we must add a prefix to the rhythm string with other symbols (mostly,
numbers) in order to inform those parameters. In this case, the prefix to
the rhythm string is coded as [𝑝]	[𝑞]	[𝑢],	where p/q is the time signature
and u is the time unit and 𝑝, 𝑞, 𝑢 are positive integers. The time unit is, in
general, the minimal non-nested duration used in the rhythm pattern, in
order durations always have an integer number of zeros.

3. The alphabet needed to encompass all possibilities of prefix strings is far
bigger than A, since, for example, in Common Music Notation we have 7
possible durations and many possibilities for time signatures. However,
it is possible to restrict the alphabet to a suitable set of them depending on
the rhythm content of the score, or the composer intentions.

4. The symbol	∗ denotes a tie joining two notes, be them within a beat,
between beats, a bar or between two bars.

5. Typically, a rhythm string representing a rhythm pattern in a bar reads:

[𝒑]	[𝒒]	[𝒖]	|	[[𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆		 𝒔𝒖𝒃𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆 𝒔𝒖𝒃𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆]	… . 𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆	𝑵]	|

where the first two bracket numbers [𝑝][𝑞] of the prefix indicate the time
signature as, for example, [7][16] means 7/16 signature. In principle, the
time unit 𝒖 is quite arbitrary, independent of the time signature. However,
its common use is restricted to the usual 7 durations, that is, 𝒖 = 1 for
Sixty-fourth Note, 𝒖 = 2 for Thirty Second Note, 𝒖 = 3 for Sixteenth
Note,	𝒖 = 4 for Eighth Note, 𝒖 = 5 for Quarter Note, 𝒖 = 6 for Half Note,
𝒖 = 	7 for Whole Note.

6. Nested brackets indicate hierarchy of grouping strings and substrings
inside the set of beats indicated by the zeros of the rhythm string. Isolated
notes inside a string or sub- string has none bracket.

7. In order to code also nested tuplets, notes inside second level nested
substrings have half of value of the higher level but keeping the same
coding as time units, that is [1 0] for a note, and [-1 0] for rests. See example
2 below.

MUSICA THEORICA Revista da Associação Brasileira de Teoria e Análise Musical 2021,
 v. 6, n. 1, p. 239–265 – Journal of the Brazilian Society for Music
 Theory and Analysis @ TeMA 2021 – ISSN 2525-5541

257

Some examples can clarify our definitions.

Example 1: Consider the rhythm pattern shown in Fig. 10. The time unit is the
eighth note since it is the minimal duration out of any nesting.

Figure 10: Rhythm Pattern with a triplet.

The associate rhythm string reads:

| [4][4][4] [1 0 -1 0 1 0 1 0 [1 0 -1 0 1 0] 1 0] |

Observe that we can’t choose the time unit longer than the eighth note (the
time unit, in this example), since in our representation the duration is given by
an integer number of zeros.

Example 2: Fig. 11 shows a more complex, not accented, rhythm pattern using
nested tuplets and ties and also with a double nesting.

Figure 11: Rhythm Pattern with tied notes and single and nested triplets and a 5-tuplet.

From the above rules, its code reads:

[4][4][4] | [1 0 1 0 -1 0 1 0 1 0] -1 0 [[1 0 1 0 1 0] -1 0 1 0] 1 0 | * |1 0 1 0 [1 0 -1 0 1 0] * 1 0 -1 0 1 0 0 |

Observe that the substring …[[1 0 1 0 1 0]… is a second level nested
rhythm pattern, so the values of its notes are half of the chosen time unit, that is,
in this example they are sixteenth notes as expected in common notation.
Observe also the position of symbol ∗ in the rhythm string representing ties
joining notes within and between bars. Although it is a logical step, we will not

MAIA, A.; MAIA, I. Codings for Rhythm Generation: a proposal

and comparative study

258

take further to third level nesting which presents additional difficulty in order to
avoid ambiguity for these types of grouping of notes.

4.2. Elementary Operations on Rhythm Strings based on the Extended Code

Given a rhythm pattern (or motive), there are many formal operations
which can be applied to a single string (unary operation), between two strings
(binary operation) and more generally N-ary operation on a set with N strings.
It worth to mention that a formal operation can lead to a correct but not elegant
representation. For example, the operation Note-Rest Inversion, defined below,
can produce two or more consecutive rests which, in general can be rewritten in
a more suitable form.

Below we show some simple operators which can be applied to rhythm
patterns and side by side can be defined on the corresponding rhythm strings. In
order to show examples, consider the rhythm pattern in Fig. 12, extracted from
the first bar of Fig. 11.

Figure 12: Rhythm pattern extract from first bar of Fig. 11.

with rhythm string

x = [4][4][4] | [1 0 1 0 -1 0 1 0 1 0] -1 0 [[1 0 1 0 1 0] -1 0 1 0] 1 0 |

1. Augmentation: just change the time unit keeping all other symbols
unchanged. So, for the rhythm pattern above we have

aug(x) = [4][4][5] | [1 0 1 0 -1 0 1 0 1 0] -1 0 [[1 0 1 0 1 0] -1 0 1 0] 1 0 |

which is decoded as

Figure 13: Augmentation of rhythm pattern in Fig. 12.

MUSICA THEORICA Revista da Associação Brasileira de Teoria e Análise Musical 2021,
 v. 6, n. 1, p. 239–265 – Journal of the Brazilian Society for Music
 Theory and Analysis @ TeMA 2021 – ISSN 2525-5541

259

An alternative representation for the same rhythm pattern of Fig. 13 is just keep the
prefix, including time unit, and add the desire number of zeros for each non-zero
number. For example, adding one more zero we get

aug(x)=|[4][4][4] | [1 0 0 1 0 0 -1 0 0 1 0 0 1 0 0] | -1 0 0 [[1 0 0 1 0 0 1 0 0] -1 0 0 1 0 0] 1 0 0 |.

Note that, in the case of augmentation, the time unit gets increase by 1,
that is, it’s a quarter note, in the prefix and the rhythm pattern now comprises
two bars.

2. Diminution: since the original rhythm pattern has an eighth note as time
unit, the new one has a sixteenth note as time unit, so the modification is
just the following pattern

Figure 14: Diminution of rhythm in Fig. 12.

and its representation code reads

dim(x) = [4][4][3] | [1 0 10 -1 0 1 0 1 0] -1 0 [[1 0 1 0 1 0] -1 0 1 0] 1 0 -1 0 0 0 0 0 0 0 0] |

Observe that, differently from the case of augmentation, we can’t have an

alternative representation keeping the unit time unchanged, since we got fractional
numbers to represent sixteenth notes.

3. Retrograde: by the above definition of retrograde we have, from Fig. 12,

the following rhythm pattern

Figure 15: Retrograde of rhythm in Fig. 12.

and its code reads

ret(x) = [4][4][4] | 1 0 [1 0 -1 0 [1 0 1 0 1 0]] -1 0 [1 0 1 0 -1 0 1 0 1 0] |

Observe that the prefix is exactly the same.

MAIA, A.; MAIA, I. Codings for Rhythm Generation: a proposal

and comparative study

260

4. Product: Given two rhythm-strings x and y we can use the string product

(non commutative), defined above as juxtaposition, in order to get large
rhythm patterns, that is xy or yx. Observe that strings x and y can have
different prefixes, as change of metrics from a bar to the next one. So they
need to be written before each string. For example, consider the rhythm
pattern

Figure 16: Rhythm pattern as the first factor of the example of Product operation.

It has a sixteenth note as time unit. Let’s denote its code as x, which reads

x = [3][4][3] | 1 0 0 1 0 0 * 1 0 0 1 0 0 [1 0 -1 0 1 0] 1 0 0 | *

| 1 0 0 1 0 0 1 0 0 1 0 [1 0 -1 0 1 0 1 0 1 0] 1 0 |

Also consider the rhythm pattern of Fig. 15 and its code

y = [4][4][4] | 1 0 [1 0 -1 0 [1 0 1 0 1 0]] -1 0 [1 0 1 0 -1 0 1 0 1 0] |

The product xy reads, by juxtaposition,

xy = [3][4][3] | 1 0 0 1 0 0 * 1 0 0 1 0 0 [1 0 -1 0 1 0] 1 0 0 | * | 1 0 0 1 0 0 1 0 0 1 0 [1 0 -1 0 1

0 1 0 1 0] 1 0 | [4][4][4] | 1 0 [1 0 -1 0 [1 0 1 0 1 0]] -1 0 [1 0 1 0 -1 0 1 0 1 0] |

which is decoded as the score fragment

Figure 17: Fragment obtained as product (juxtaposition) of rhythm patterns of Figs. 16

and 15, respectively.

MUSICA THEORICA Revista da Associação Brasileira de Teoria e Análise Musical 2021,
 v. 6, n. 1, p. 239–265 – Journal of the Brazilian Society for Music
 Theory and Analysis @ TeMA 2021 – ISSN 2525-5541

261

5. Fragmentation (or Truncation): extract any figure, or set of figures, from
the rhythm pattern. Consider again the rhythm pattern in Fig. 16 and
extract, for example, the rhythm block

Figure 18: A fragment extracted from rhythm pattern in Fig. 16

The code for this fragment reads simply as

[3] | [1 0 -1 0 1 0] 1 0 0 * 1 0 0 1 0 0 |

Observe that only the time unit of the prefix must be informed, since the
extracted excerpt from the score has no indication of time signature. Also, the
vertical bars || indicate the begin and the end of the excerpt not a measure as
shown in the above figure.

6. Note-Rest Inversion: exchange all notes to rests and vice-versa. This
means exchanges 1 by 0 and vice versa. As example, take the rhythm
pattern of Fig. 15.
Its code reads

[4][4][4] | 1 0 [1 0 -1 0 [1 0 1 0 1 0]] -1 0 [1 0 1 0 -1 0 1 0 1 0] |

Its Note-Rest Inversion reads:

[4][4][4] | -1 0 [-1 0 1 0 [-1 0 -1 0 -1 0]] 1 0 [-1 0 -1 0 1 0 -1 0 -1 0] |

which is decoded as the rhythm pattern

��
�
�

�

�

�

� �
� � �

�
� � �

�

�
� � �

�
� � � � �

�

MAIA, A.; MAIA, I. Codings for Rhythm Generation: a proposal

and comparative study

262

As a general observation, note that in this representation for any rhythm
code the number of left brackets ‘ [’ is equal to the right brackets ‘] ‘.

Of course, this representation does not necessarily include all possible
rhythms. It has its limitations, including the choice of the unit rhythmic figure.

5. Using the Extended Code for Analysis and Composition
In this section we just show a diagram indicating the use of rhythm codes

in analysis and composition. The source, or coding, comes from a score in MIDI
or XML format. While in MIDI-based representation the time is a continuous
variable and note durations are controlled by Note-On and Note-Off
specification, XML based representation has durations indicated closely to that
one from the score. So, they are more suitable for our proposal of rhythms
coding. The diagram below shows the process from the input score, or directly
coding a rhythm pattern (AUTO), to the output score (see Fig. 17).

In the case of computer aided composition, a natural continuation of this
work could be in the generation of new rhythm patterns using the concept of
Rhythm Algebras defined on sets of strings and how to use them to generate
complex rhythm patterns. These Algebraic structures enters in the Diagram as
the FORMAL/MATH MODELS. A simple algebra can be generated, for example,
as combinations of the operations defined in Section 4.2.

Another interesting concept which can be explored using the code is that
one of path or orbit in a Rhythm Space. Given an initial rhythm pattern 𝑥v and
an operator 𝑇, an orbit of size 𝑁 is a sequence of points (rhythm patterns) in the
Rhythm Space given by the recursive application of operator 𝑇, that is,

𝑥K = 𝑇(𝑥v)
𝑥L = 𝑇(𝑥K)
𝑥y = 𝑇(𝑥L)

…
𝑥z = 𝑇(𝑥z^K)

The orbit is closed (or cyclical) if there exist a 𝑁 > 0 such that 𝑥z = 	𝑥v.

For example, the operator Retrograde generate always orbit of size 2, since, given
any rhythm pattern 𝑥v we have 𝑥K = 𝑅 	𝑥v and 𝑥L = 𝑅 	𝑥K = 𝑅(𝑅 𝑥v = 	𝑥v.

The definition above can be extended for a set of operators or/and a set of
initial points.

MUSICA THEORICA Revista da Associação Brasileira de Teoria e Análise Musical 2021,
 v. 6, n. 1, p. 239–265 – Journal of the Brazilian Society for Music
 Theory and Analysis @ TeMA 2021 – ISSN 2525-5541

263

Figure 17: Diagram for Using the Extended Code.

Diagram:	How	to	use	Rhythm	Coding	
	
	
	

CODE	

TRANSCRIPTOR	

	
NEW	CODE	

	

FORMAL	/	MATH		MODELs	

TRANSCRIPTOR	

NEW	SOURCE	
MIDI	/	XML	

	
SCORE	

	

MAIA, A.; MAIA, I. Codings for Rhythm Generation: a proposal

and comparative study

264

6. Conclusions
The approach to rhythm encoding presented here is far to be complete.

Many other aspects of rhythm, mainly those related to expressiveness such as
rubato, grace notes among others, are not covered by the notations we show here.
However, the principles of encoding we introduce along the exposition are quite
general. In addition, there are, of course, many other functions and operations
which can be formally applied to rhythm patterns. This strongly depends on the
creativeness of the composer and most probably it would be necessary to extend
the alphabet, besides rules and operations, in order to code new patterns. A great
number of new Rhythm Morphologies can be derived which can be used for
analysis and composition as, for example, polyrhythm patterns, written as a
matrices of rhythm codes. So, we hope this work can help students and
researchers as a hint for creative musical work using this mathematical approach
to explore many different Rhythm Spaces.

References
1. Boenn, Georg. 2018. Computational Models of Rhythm and Meter, Springer Int.

Pub. AG.

2. Cage, John. 1969. Notations, Something Else Press Inc.

3. Cook, Nicholas. 2004. Computational and Comparative Musicology. In:
Clarke, Eric; Cook, Nicholas (Eds.). Empirical Musicology, Aims, Methods,
Prospects. New York: Oxford University Press.

4. Cooper, Grosvenor; Meyer, Leonard. 1960. The Rhythmic Structure of Music.
Chicago: University of Chicago Press.

5. Crochemore, Maxime; Hancart, Christophe; Lecroq, Thierry. 2007. Algorithms
on Strings. Cambridge: Cambridge University Press.

6. Crochemore, Maxime; Rytter, Wojciech. 2002. Jewels of Stringology. Singapore:
World Scientific Publishing Co. Pte. Ltda.

7. Gould, Elaine. 2011. Behind Bars, The Definitive Guide to Music Notation. Los
Angeles: Alfred Music Publishing.

8. Hook, Julian. 1998. Rhythm in the Music of Messiaen: an Algebraic Study and
an Application in the Turangalîla Symphony. Music Theory Spectrum, v. 20, n. 1,
p. 97–120.

MUSICA THEORICA Revista da Associação Brasileira de Teoria e Análise Musical 2021,
 v. 6, n. 1, p. 239–265 – Journal of the Brazilian Society for Music
 Theory and Analysis @ TeMA 2021 – ISSN 2525-5541

265

9. Sethares, William. 2007. Rhythm and Transforms. New York: Springer
Publishing.

10. Toussaint, Godfried. 2013. The Geometry of Musical Rhythm: What Makes a
‘’Good” Rhythm Good? Florida: CRC Press.

11. Varèse, Edgard; Chou, Wen-chung. 1996. The Liberation of Sound.
Perspectives of New Music, v. 5, n. 1, p. 11–19.

